The Peculiar Phase Structure of Random Graph Bisection

Allon G. Percus

School of Mathematical Sciences Claremont Graduate University

September 3, 2009

Collaborators

- Gabriel Istrate
- Bruno Gonçalves
- Robert Sumi
- Stefan Boettcher

Journal of Mathematical Physics 49, 125219 (2008).

Outline

- Background
 - Phase Structure
 - Graph Bisection Problem
- Random Graph Bisection
 - Previous Results
 - Upper Bound on Bisection Width
 - Computational Consequences

Consider random 3-SAT, and look at space of all satisfying assignments of a formula.

- Define two solutions to be adjacent if Hamming distance is small: at most o(n) variables differ in value.
- For small α , all solutions lie in a single "cluster": any two solutions are linked by a path of adjacent solutions.

Below a threshold $\alpha_d < \alpha_c$: RS, single solution cluster.

Below a threshold $\alpha_d < \alpha_c$: RS, single solution cluster.

Above α_d : RSB, cluster fragments into multiple non-adjacent clusters.

Below a threshold $\alpha_d < \alpha_c$: RS, single solution cluster.

Above α_d : RSB, cluster fragments into multiple non-adjacent clusters.

Algorithmic Consequences

- Cluster fragmentation is associated with formation of frozen variables: local backbone of variables that take on same value within a cluster of solutions.
- This traps algorithms: lots of satisfying assignments but hard to find them, making it a "hard satisfiable" subphase.
- But physical picture also motivates new algorithms: survey propagation explicitly takes account of cluster structure, fixing only those variables that are frozen within a cluster.

Definition

• Graph G = (V, E), |V| even

Definition

- Graph G = (V, E), |V| even
- Partition V into two disjoint subsets V_1 and V_2 , $|V_1| = |V_2|$
- Minimize bisection width $w = |(u, v) \in E : u \in V_1, v \in V_2|$: number of edges with an endpoint in each subset
- Applications: computer chip design, resource allocation, image processing

Worst-Case / Average-Case Complexity

- Corresponding decision problem is in P: is there a perfect bisection (w = 0)?
- Optimization problem is NP-hard.
- What about random instances (\mathcal{G}_{np} ensemble)?

Structure of \mathcal{G}_{np} Graphs

Mean degree of graph is $\alpha = p(n-1)$. The following results on the birth of the giant component are known [Erdős-Rényi, 1959]:

- For α < 1, only very small components exist: size $O(\log n)$.
- For $\alpha > 1$, there exists a giant component of expected size gn, $g = 1 e^{-\alpha g}$. All other components: size $O(\log n)$.
- Expected fraction of isolated vertices is $(1-p)^{n-1} \approx e^{-\alpha}$.

Structure of \mathcal{G}_{np} Graphs

Mean degree of graph is $\alpha = p(n-1)$. The following results on the birth of the giant component are known [Erdős-Rényi, 1959]:

- For α < 1, only very small components exist: size $O(\log n)$.
- For $\alpha > 1$, there exists a giant component of expected size gn, $g = 1 e^{-\alpha g}$. All other components: size $O(\log n)$.
 - At $\alpha = 2 \log 2$, g = 1/2
- Expected fraction of isolated vertices is $(1-p)^{n-1} \approx e^{-\alpha}$.
 - At $\alpha = 2 \log 2$, n/4 isolated vertices

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to $\alpha=2\log 2$, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to $\alpha=2\log 2$, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \le \alpha/2$ w.h.p.

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to $\alpha=2\log 2$, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \le \alpha/2$ w.h.p.
- For $2 \log 2 < \alpha < 4 \log 2$, $w/n \le (\alpha \log 2)/4$ w.h.p. [Goldberg & Lynch, 1985]

Known results and bounds [Luczak & McDiarmid, 2001]:

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to $\alpha=2\log 2$, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \le \alpha/2$ w.h.p.
- For $2 \log 2 < \alpha < 4 \log 2$, $w/n \le (\alpha \log 2)/4$ w.h.p. [Goldberg & Lynch, 1985]

Still leaves a gap at $\alpha = 2 \log 2$. Can we do better?

Experimental results [Boettcher & Percus, 1999]:

Consequence: Solution Structure

- For α < 2 log 2, all solutions lie in a single cluster (RS) [Istrate, Kasiviswanathan & Percus, 2006]
 - Enough small components that any two solutions are connected by a chain of small swaps preserving balance constraint
- For $\alpha > 2 \log 2$, solution space structure is determined by how giant component gets cut

Giant Component Structure

- Giant component consists of a mantle of trees and a remaining core [Pittel, 1990]
- Individual trees are of size O(log n)
- Does optimal cut simply trim trees, or does it slice through core?

As long as core is smaller than n/2, we can at least get an upper bound on w by restricting cuts to trees.

Theorem

Let $\epsilon = \alpha - 2 \log 2$. Then there exists an $\epsilon_0 > 0$ such that for every $\epsilon < \epsilon_0$, w.h.p.

$$\frac{w}{n} < \frac{\epsilon}{\log 1/\epsilon}$$

for graphs with mean degree α in \mathcal{G}_{np} .

Among other things, this closes the gap at $\alpha = 2 \log 2$. Now how do we prove it?

How Many Trees is Enough?

- Let δn be "excess" of giant component, $\delta = g 1/2$. Let bn be number of nodes in mantle.
- Then δ/b is fraction of mantle's nodes to cut.
- Now find largest t_0 such that δ/b equals fraction of nodes living on trees of size $\geq t_0$.
- If P(t) is distribution of tree sizes on mantle,

$$\frac{\delta}{b} = \frac{\sum_{t=t_0}^{\infty} tP(t)}{\sum_{t=1}^{\infty} tP(t)}$$

• The number of trees of size $\geq t_0$ is then

$$w' = \sum_{t=t_0}^{\infty} P(t) \frac{bn}{\sum_{t=1}^{\infty} tP(t)}$$

Distribution of Tree Sizes

Fortunate result of probabilistic independence in \mathcal{G}_{np} [Janson et al, 2000]:

- P(t) is simply given by # of ways of constructing tree of size t from q roots (q = (g b)n, size of core) and r other nodes (r = bn, size of mantle).
- This is "just combinatorics":

$$P(t) = {r \choose t} t^t \frac{q}{r} \frac{(q+r-t)^{r-t+1}}{(q+r)^{r-1}}$$

• Let $\rho = b/g$. Then at large n,

$$P(t) pprox rac{t^t e^{-
ho t}}{t!}
ho^{t-1} (1-
ho)$$

Upper Bound on Bisection Width

- We now have enough to calculate (or at least bound) w'. The rest of the proof is just cleaning up.
- That gives the upper bound we need on bisection width w.
- Theorem implies that w/n scales superlinearly in $\epsilon = \alpha 2 \log 2$ for small ϵ . This turns out to have physical and algorithmic consequences.
- This holds for every $\epsilon < \epsilon_0$, but ϵ_0 may be very small!

Look more closely at giant component structure. Define notion of expander graphs:

- Given graph G = (V, E), imagine cutting V into two subsets V_1 and V_2 (w.l.o.g. let $|V_1| \le |V_2|$).
- Expansion of this cut is

$$h = \frac{|(u, v) \in E : u \in V_1, v \in V_2|}{|V_1|},$$

i.e., # of cuts per vertex.

 If in a sequence of graphs of increasing size, expansion of all cuts is bounded below by a constant, these are known as expander graphs.

 Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.

 Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1 / log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].
- Decorations have certain tree-like properties, and are of size O(log n).

Optimal Cut Avoids Expander Core

Claim

There exists an $\alpha_d > 2 \log 2$ such that for all $\alpha < \alpha_d$, an optimal bisection cannot cut any finite part of the expander core.

Optimal Cut Avoids Expander Core

Claim

There exists an $\alpha_d > 2 \log 2$ such that for all $\alpha < \alpha_d$, an optimal bisection cannot cut any finite part of the expander core.

Idea:

- Let $\epsilon = \alpha 2 \log 2$. From superlinearity of optimal bisection width, $w/\epsilon n \to 0$ as $\epsilon \to 0$.
- Number of vertices cut from giant component $\sim \epsilon n$, so optimal cut requires arbitrarily small expansion.
- Expander core cannot have cuts with vanishing expansion, so for ϵ below some constant, optimal cut must avoid expander core.

Apparent Consequences: Solution Structure

- For all $\alpha < \alpha_d$, optimal bisections only cut decorations.
- Since decorations are small, similar arguments seem to apply as for $\alpha < 2 \log 2$: any two optimal bisections are connected by a chain of small swaps preserving balance constraint.
- All solutions then lie in a single cluster (RS) up to α_d .
- Suggests that unlike in SAT, $\alpha_d > \alpha_c$! This would be first known example where single cluster persists through and beyond critical threshold.

Apparent Consequences: Algorithmic Complexity

- For α < α_d, optimal bisection can be found by ranking expansion of decorations.
- As in tree-cutting upper bound, cut decorations in increasing order of expansion until giant component is pruned to size n/2.
- Decorations can be found in polynomial time [Benjamini et al, 2006].
- Difficulty is that unlike for trees, it could be best to cut a decoration in the middle.
- But decorations are small $(O(\log n))$, and deciding where to cut a given decoration is primarily a bookkeeping operation: takes $2^{O(\log n)} = n^{O(1)}$ operations.

Apparent Consequences: Algorithmic Complexity

Conjecture

For graphs with mean degree $\alpha < \alpha_d$ in \mathcal{G}_{np} , there exists an algorithm that finds the optimal bisection, w.h.p., in polynomial time.

If this conjecture holds, it will provide a striking example of an NP-hard problem where typical instances near the phase transitions are **not** hard.

Conclusions

- For graphs in \mathcal{G}_{np} , new upper bound on bisection width that closes the gap at the critical threshold α_c .
- All solutions appear to lie in a single cluster (RS) up to and beyond α_c, with an RSB transition possibly taking place above this threshold.
- Hardest instances do not appear to be concentrated at α_c .
- Analyzing ensembles of structured random graphs, such as those in \mathcal{G}_{nr} , remains largely an open problem.